Back to Search Start Over

Models Derived from In Vitro Analyses of Spleen, Liver, and Lung Leukocyte Functions Predict Vaccine Efficacy against the Francisella tularensis Live Vaccine Strain (LVS)

Authors :
De Pascalis, Roberto
Chou, Alicia Y.
Ryden, Patrik
Kennett, Nikki J.
Sjöstedt, Anders
Elkins, Karen L.
De Pascalis, Roberto
Chou, Alicia Y.
Ryden, Patrik
Kennett, Nikki J.
Sjöstedt, Anders
Elkins, Karen L.
Publication Year :
2014

Abstract

Currently, there are no licensed vaccines and no correlates of protection against Francisella tularensis, which causes tularemia. We recently demonstrated that measuring in vitro control of intramacrophage bacterial growth by murine F. tularensis-immune splenocytes, as well as transcriptional analyses, discriminated Francisella vaccines of different efficacies. Further, we identified potential correlates of protection against systemic challenge. Here, we extended this approach by studying leukocytes derived from lungs and livers of mice immunized by parenteral and respiratory routes with F. tularensis vaccines. Liver and lung leukocytes derived from intradermally and intranasally vaccinated mice controlled in vitro Francisella Live Vaccine Strain (LVS) intramacrophage replication in patterns similar to those of splenocytes. Gene expression analyses of potential correlates also revealed similar patterns in liver cells and splenocytes. In some cases (e. g., tumor necrosis factor alpha [TNF-alpha], interleukin 22 [IL-22], and granulocyte-macrophage colony-stimulating factor [GM-CSF]), liver cells exhibited even higher relative gene expression, whereas fewer genes exhibited differential expression in lung cells. In contrast with their strong ability to control LVS replication, splenocytes from intranasally vaccinated mice expressed few genes with a hierarchy of expression similar to that of splenocytes from intradermally vaccinated mice. Thus, the relative levels of gene expression vary between cell types from different organs and by vaccination route. Most importantly, because studies comparing cell sources and routes of vaccination supported the predictive validity of this coculture and gene quantification approach, we combined in vitro LVS replication with gene expression data to develop analytical models that discriminated between vaccine groups and successfully predicted the degree of vaccine efficacy. Thus, this strategy remains a promising means of identifying an

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234172961
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1128.mBio.00936-13