Back to Search
Start Over
Light-matter interaction of strong laser pulses in the micro-, nano-, and picosecond regimes
- Publication Year :
- 2007
-
Abstract
- Light propagation in a medium is sensitively dependent on the shape and intensity of the optical pulse as well as on the electronic and vibrational structure of the basic molecular units. We review in this paper results of systematic studies of this problem for isotropic media. Our theoretical approach-the quantum mechanical-electrodynamical (QMED) approach-is based on a quantum mechanical account of the many-level electron-nuclear medium coupled to a numerical solution of the density matrix and Maxwell s equations. This allows to accommodate a variety of nonlinear effects which accomplish the propagation of strong light pulses. Particular attention is paid to the understanding of the role of coherent and sequential excitations of electron-nuclear degrees of freedom. The QMED combination of quantum chemistry with classical pulse propagation allows to estimate the optical transmission from cross sections of multi-photon absorption processes and from considerations of propagation effects, saturation and pulse effects. Results of the theory suggest that in the nonlinear regime it is often necessary to account simultaneously for coherent one-step and incoherent step-wise multi-photon absorption, as well as for off-resonant excitations even when resonance conditions prevail. The dynamic theory of nonlinear propagation of a few interacting intense light pulses is here highlighted in a study of the optical power limiting with platinum-organic molecular compounds. © 2007 Materials Research Society.<br />References: McKay, T.J., Bolger, J.A., Staromlynska, J., Davy, J.R., (1998) J. Chem. Phys, 118, p. 5537; Parker, C.A., (1968) Photoluminescence of solutions, , Elsevier; Cooper, T.M., McLean, D.C., Rogers, J.E., (2001) Chem. Phys. Lett, 349, p. 31; Norman, P., Cronstrand, P., Ericsson, J., (2002) Chem. Phys, 285, p. 207; Rogers, J.E., Cooper, T.M., Fleitz, P.A., Glass, D.J., McLean, D.G., (2002) J. Phys. Chem. A, 106, p. 10108; J. E. Rogers, K. A. Nguyen, D. C. Hufnagle, D. C. McLean, W. Su, K. M. Gossett, A. R. Burke, S. A. Vinogradov, R. Pachter, and P. A. Fleitz, J. Phys. Chern. A 107, 11331 (2003)Rogers, J.E., Slagle, J.E., McLean, D.G., Sutherland, R.L., Sankaran, B., Kannan, R., Tan, L.-S., Fleitz, P.A., (2004) J. Phys. Chem. A, 108, p. 5514; Baev, A., Gel mukhaniov, F., Macak, P., Ågreni, H., Luo, Y., (2002) J. Chem. Phys, 117, p. 6214; Baev, A., Gel mukhaniov, F., Kimberg, V., arid, H., Ågren, (2003) J. Phys. B: At. Mol. Opt. Phys, 36, p. 3761; Jackson, J.D., (1999) Classical Electrodynamics, , Wiley, New York, 3rd ed; Boyd, R.W., (1992) Nonlinear Optics, , Academic Press, Inc, San Diego; Gel mukhanov, F., Baev, A., Macak, P., Luo, Y., Ågren, H., (2002) J. Opt. Soc. Am. B, 19, p. 937; Becke, A.D., (1993) J. Chem. Phys, 98, p. 5648; Bergner, A., Dolg, M., Kuchle, W., Stoll, H., Preuss, H., (1993) Mol. Phys, 80, p. 1431; Andrae, D., Haussermann, U., Dolg, M., Stoll, H., Preuss, H., (1990) Theor. Chim. Acta, 77, p. 123; Hehre, W.J., Ditche̊ld, R., Pople, J.A., (1972) J. Chem. Phys, 56, p. 2257; Yanai, T., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett, 393, p. 51; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, et al. Gaussian 98 (1998), Gaussian Inc., Pittsburgh PA, 1998. See http://www.gaussian.comhttp://www.kjemi.uio.no/software/dalton/dalton.html, DALTON, a molecular electronic structure program, Release 2.0 2005, seePeach, M.J.G., Helgaker, T
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234134556
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1557.PROC-1015-BB01-04