Back to Search
Start Over
Understanding the Capacitance of PEDOT:PSS
- Publication Year :
- 2017
-
Abstract
- Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion-electron conducting polymer system. PEDOT: PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy-converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT: PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two-phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two-phase PEDOT: PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT-rich and PSS-rich interconnected grains that comprises two phases of the bulk of PEDOT: PSS. This new insight paves a way for designing materials and devices, based on mixed ion-electron conductors, with improved performance.<br />Funding Agencies|The Swedish Energy Agency [38332-1]; Swedish Research Council [245-2010-1062]; Research Centre Security Link [VINNOVA 2009-00966]; Norrkopings fond for Forskning och Utveckling; CeNano; Knut and Alice Wallenberg Foundation; Swedish Foundation for Strategic Research (SSF); Advanced Functional Material SFO-center at Linkoping University [2009-00971]; Swedish National Infrastructure for Computing (SNIC); European Research Council (ERC) [307596, 681881]; Knut and Alice Wallenberg Foundation (Tail of the Sun); Swedish Foundation for Strategic Research [0-3D]
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234131773
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1002.adfm.201700329