Back to Search Start Over

Last millennium Northern Hemisphere summer temperatures from tree rings : Part II, spatially resolved reconstructions

Authors :
Anchukaitis, Kevin J.
Wilson, Rob
Briffa, Keith R.
Buntgen, Ulf
Cook, Edward R.
D'Arrigo, Rosanne
Davi, Nicole
Esper, Jan
Frank, David
Gunnarson, Björn E.
Hegerl, Gabi
Helama, Samuli
Klesse, Stefan
Krusic, Paul J.
Linderholm, Hans W.
Myglan, Vladimir
Osborn, Timothy J.
Zhang, Peng
Rydval, Milos
Schneider, Lea
Schurer, Andrew
Wiles, Greg
Zorita, Eduardo
Anchukaitis, Kevin J.
Wilson, Rob
Briffa, Keith R.
Buntgen, Ulf
Cook, Edward R.
D'Arrigo, Rosanne
Davi, Nicole
Esper, Jan
Frank, David
Gunnarson, Björn E.
Hegerl, Gabi
Helama, Samuli
Klesse, Stefan
Krusic, Paul J.
Linderholm, Hans W.
Myglan, Vladimir
Osborn, Timothy J.
Zhang, Peng
Rydval, Milos
Schneider, Lea
Schurer, Andrew
Wiles, Greg
Zorita, Eduardo
Publication Year :
2017

Abstract

Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May August) mean temperatures across the extratropical Northern Hemisphere (40-90 degrees N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1233976307
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.quascirev.2017.02.020