Back to Search
Start Over
Inkjet printing technology for increasing the I/O density of 3D TSV interposers
- Publication Year :
- 2017
-
Abstract
- Interposers with through-silicon vias (TSVs) play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems. In the current practice of fabricating interposers, solder balls are placed next to the vias; however, this approach requires a large foot print for the input/output (I/O) connections. Therefore, in this study, we investigate the possibility of placing the solder balls directly on top of the vias, thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections. To reach this goal, inkjet printing (that is, piezo and super inkjet) was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer. The under bump metallization (UBM) pads were also successfully printed with inkjet technology on top of the polymer-filled vias, using either Ag or Au inks. The reliability of the TSV interposers was investigated by a temperature cycling stress test (-40 °C to +125 °C). The stress test showed no impact on DC resistance of the TSVs; however, shrinkage and delamination of the polymer was observed, along with some micro-cracks in the UBM pads. For proof of concept, SnAgCu-based solder balls were jetted on the UBM pads.<br />QC 20170510
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1233606115
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1038.micronano.2017.2