Back to Search
Start Over
Sobolev inequalities in arbitrary domains
- Publication Year :
- 2016
-
Abstract
- A theory of Sobolev inequalities in arbitrary open sets in R-n is established. Boundary regularity of domains is replaced with information on boundary traces of trial functions and of their derivatives up to some explicit minimal order. The relevant Sobolev inequalities exhibit the same critical exponents as in the classical framework. Moreover, they involve constants independent of the geometry of the domain, and hence yield genuinely new results even in the case when just smooth domains are considered. Our approach relies upon new representation formulas for Sobolev functions, and on ensuing pointwise estimates which hold in any open set. (C) 2016 Elsevier Inc. All rights reserved.<br />Funding Agencies|Research Project of Italian Ministry of University and Research (MIUR) Prin [2012TC7588]; GNAMPA of the Italian INdAM (National Institute of High Mathematics)
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1233517847
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1016.j.aim.2016.02.012