Back to Search Start Over

The relationship between fly ash chemistry and the thermal formation of polychlorinated pollutants during waste incineration

Authors :
Phan, Duong Ngoc Chau
Phan, Duong Ngoc Chau
Publication Year :
2013

Abstract

The thermal formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and naphthalenes (PCNs) is a major problem in waste incineration. Ideally, rather than relying on air cleaning systems and treatment techniques, their formation should be minimized or, if possible eliminated. The work presented in this thesis was conducted to obtain a deeper understanding of the thermal formation of PCDDs, PCDFs, PCBs, and PCNs during incineration using a 5 kW laboratory scale incinerator and two artificial wastes that were designed to reflect regional differences in waste composition. The first part of the thesis focuses on the validation of a recently-developed flue-gas sampling probe with enhanced cooling capabilities. Artifact formation of PCDDs and PCDFs can occur during the sampling of hot flue gases if the cooling is insufficient. The new probe was successfully used to collect samples at 700 °C without biasing the measured POP levels. The thermal formation of PCDDs, PCDFs, PCBs, and PCNs in the post-combustion zone of the incinerator was then studied by collecting flue gas samples at 400 °C, 300 °C, and 200 °C during the incineration of the two artificial wastes. Highly chlorinated POPs were formed in larger quantities when burning the waste with the higher content of metals and chlorine, which suggests that high metal levels in the waste favor the chlorination of less chlorinated POPs or otherwise facilitate the formation of highly chlorinated polyaromatics, possibly via the condensation of highly chlorinated phenols. The concentrations of these pollutants and the abundance of highly chlorinated homologues increased as the flue gas cooled. Fly ash particles play an important role in thermal POP formation by providing essential elements (carbon, chlorine, etc.) and catalytic sites. The chemical and mineralogical properties of fly ash samples were studied by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron M

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1233497115
Document Type :
Electronic Resource