Back to Search Start Over

5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice.

Authors :
Song, X M
Fiedler, M
Galuska, D
Ryder, J W
Fernström, Maria
Chibalin, A V
Wallberg-Henriksson, H
Zierath, J R
Song, X M
Fiedler, M
Galuska, D
Ryder, J W
Fernström, Maria
Chibalin, A V
Wallberg-Henriksson, H
Zierath, J R
Publication Year :
2002

Abstract

AIMS/HYPOTHESIS: The 5'AMP-activated protein kinase is an important mediator of muscle contraction-induced glucose transport and a target for pharmacological treatment of Type II (non-insulin-dependent) diabetes mellitus. The 5'AMP-activated protein kinase can be activated by 5-aminoimidazole-4-carboxamide ribonucleoside. We hypothesised that 5-aminoimidazole-4-carboxamide ribonucleoside treatment could restore glucose homeostasis in ob/ob mice. METHODS: Lean and ob/ob mice were given 5-aminoimidazole-4-carboxamide ribonucleoside (1 mg.g body wt(-1).day(-1) s.c) or 0.9 % NaCl (vehicle) for 1-7 days. RESULTS: Short-term 5-aminoimidazole-4-carboxamide ribonucleoside treatment normalised glucose concentrations in ob/ob mice within 1 h, with effects persisting over 4 h. After 1 week of daily injections, 5-aminoimidazole-4-carboxamide ribonucleoside treatment corrected hyperglycaemia, improved glucose tolerance, and increased GLUT4 and hexokinase II protein expression in skeletal muscle, but had deleterious effects on plasma non-esterified fatty acids and triglycerides. Treatment with 5-aminoimidazole-4-carboxamide ribonucleoside increased liver glycogen in fasted and fed ob/ob mice and muscle glycogen in fasted, but not fed ob/ob and lean mice. Defects in insulin-stimulated phosphatidylinositol 3-kinase and glucose transport in skeletal muscle from ob/ob mice were not corrected by 5-aminoimidazole-4-carboxamide ribonucleoside treatment. While ex vivo insulin-stimulated glucose transport was reduced in isolated muscle from ob/ob mice, the 5-aminoimidazole-4-carboxamide ribonucleoside stimulated response was normal. CONCLUSION/INTERPRETATION: The 5-aminoimidazole-4-carboxamide ribonucleoside mediated improvements in glucose homeostasis in ob/ob mice can be explained by effects in skeletal muscle and liver. Due to the apparently deleterious effects of 5-aminoimidazole-4-carboxamide ribonucleoside on the blood lipid profile, strategies to develop tissue-specific and pathway

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1233354662
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1007.s001250200006