Back to Search
Start Over
Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power
- Source :
- Renner , J , Puchinger , S , Wachter-Zeh , A , Hollanti , C & Freij-Hollanti , R 2020 , Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power . in Proceedings of 2020 IEEE International Symposium on Information Theory . , 9174384 , IEEE , IEEE International Symposium on Information Theory - Proceedings , vol. 2020-June , pp. 19-24 , 2020 IEEE International Symposium on Information Theory , Los Angeles , California , United States , 21/06/2020 .
- Publication Year :
- 2020
-
Abstract
- We define and analyze low-rank parity-check (LRPC) codes over extension rings of the finite chain ring {{\mathbb{Z}}-{{p^r}}}, where p is a prime and r is a positive integer. LRPC codes have originally been proposed by Gaborit et al. (2013) over finite fields for cryptographic applications. The adaption to finite rings is inspired by a recent paper by Kamche et al. (2019), which constructed Gabidulin codes over finite principle ideal rings with applications to space-time codes and network coding. We give a decoding algorithm based on simple linear-algebraic operations. Further, we derive an upper bound on the failure probability of the decoder. The upper bound is valid for errors whose rank is equal to the free rank.
Details
- Database :
- OAIster
- Journal :
- Renner , J , Puchinger , S , Wachter-Zeh , A , Hollanti , C & Freij-Hollanti , R 2020 , Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power . in Proceedings of 2020 IEEE International Symposium on Information Theory . , 9174384 , IEEE , IEEE International Symposium on Information Theory - Proceedings , vol. 2020-June , pp. 19-24 , 2020 IEEE International Symposium on Information Theory , Los Angeles , California , United States , 21/06/2020 .
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1233158430
- Document Type :
- Electronic Resource