Back to Search Start Over

Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration

Authors :
Hulshof, Frits F. B.
Hulshof, Frits F. B.
Papenburg, Bernke
Vasilevich, Aliaksei
Hulsman, Marc
Zhao, Yiping
Levers, Marloes
Fekete, Natalie
de Boer, Meint
Yuan, Huipin
Singh, Shantanu
Beijer, Nick
Bray, Mark-Anthony
Reinders, Marcel
Carpenter, Anne E.
van Blitterswijk, Clemens
Stamatialis, Dimitrios
de Boer, Jan
Logan, David J.
Hulshof, Frits F. B.
Hulshof, Frits F. B.
Papenburg, Bernke
Vasilevich, Aliaksei
Hulsman, Marc
Zhao, Yiping
Levers, Marloes
Fekete, Natalie
de Boer, Meint
Yuan, Huipin
Singh, Shantanu
Beijer, Nick
Bray, Mark-Anthony
Reinders, Marcel
Carpenter, Anne E.
van Blitterswijk, Clemens
Stamatialis, Dimitrios
de Boer, Jan
Logan, David J.
Source :
Biomaterials vol.137 (2017) p.49-60 [ISSN 0142-9612]
Publication Year :
2017

Abstract

Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. (C) 2017 Elsevier Ltd. All rights reserved.

Details

Database :
OAIster
Journal :
Biomaterials vol.137 (2017) p.49-60 [ISSN 0142-9612]
Notes :
DOI: 10.1016/j.biomaterials.2017.05.020, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1232226203
Document Type :
Electronic Resource