Back to Search Start Over

Forecast density combinations of dynamic models and data driven portfolio strategies

Authors :
Baştürk, N.
Borowska, A.
Grassi, S.
Hoogerheide, L.
van Dijk, H. K.
Baştürk, N.
Borowska, A.
Grassi, S.
Hoogerheide, L.
van Dijk, H. K.
Source :
Vrije Universiteit Amsterdam Repository
Publication Year :
2019

Abstract

A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.

Details

Database :
OAIster
Journal :
Vrije Universiteit Amsterdam Repository
Notes :
Journal of Econometrics vol.210 (2019) nr.1 p.170-186 [ISSN 0304-4076], English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1231551036
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.jeconom.2018.11.011