Back to Search Start Over

Efficient and Effective Similar Subtrajectory Search with Deep Reinforcement Learning

Authors :
Wang, Zheng
Long, Cheng
Cong, Gao
Liu, Yiding
Wang, Zheng
Long, Cheng
Cong, Gao
Liu, Yiding
Publication Year :
2020

Abstract

Similar trajectory search is a fundamental problem and has been well studied over the past two decades. However, the similar subtrajectory search (SimSub) problem, aiming to return a portion of a trajectory (i.e., a subtrajectory) which is the most similar to a query trajectory, has been mostly disregarded despite that it could capture trajectory similarity in a finer-grained way and many applications take subtrajectories as basic units for analysis. In this paper, we study the SimSub problem and develop a suite of algorithms including both exact and approximate ones. Among those approximate algorithms, two that are based on deep reinforcement learning stand out and outperform those non-learning based algorithms in terms of effectiveness and efficiency. We conduct experiments on real-world trajectory datasets, which verify the effectiveness and efficiency of the proposed algorithms.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1228394628
Document Type :
Electronic Resource