Back to Search
Start Over
Transmission System Resilience Enhancement with Extended Steady-state Security Region in Consideration of Uncertain Topology Changes
- Publication Year :
- 2019
-
Abstract
- The increasing extreme weather events poses unprecedented challenges on power system operation because of their uncertain and sequential impacts on power systems. This paper proposes the concept of an extended steady-state security region (ESSR), and resilience enhancement for transmission systems based on ESSR in consideration of uncertain varying topology changes caused by the extreme weather events is implemented. ESSR is a ploytope describing a region, in which the operating points are within the operating constraints. In consideration of uncertain varying topology changes with ESSR, the resilience enhancement problem is built as a bilevel programming optimization model, in which the system operators deploy the optimal strategy against the most threatening scenario caused by the extreme weather events. To avoid the curse of dimensionality with regard to system topologies for a large scale system, the Monte Carlo method is used to generate uncertain system topologies, and a recursive McCormick envelope-based approach is proposed to connect generated system topologies to optimization variables. Karush Kuhn Tucker (KKT) conditions are used to transform the suboptimization model in the second level into a group of equivalent constraints in the first level. A simple test system and IEEE 118-bus system are used to validate the proposed.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1228378318
- Document Type :
- Electronic Resource