Back to Search Start Over

Online terrain estimation for autonomous vehicles on deformable terrains

Authors :
Dallas, James
Jain, Kshitij
Dong, Zheng
Cole, Michael P.
Jayakumar, Paramsothy
Ersal, Tulga
Dallas, James
Jain, Kshitij
Dong, Zheng
Cole, Michael P.
Jayakumar, Paramsothy
Ersal, Tulga
Publication Year :
2019

Abstract

In this work, a terrain estimation framework is developed for autonomous vehicles operating on deformable terrains. Previous work in this area usually relies on steady state tire operation, linearized classical terramechanics models, or on computationally expensive algorithms that are not suitable for real-time estimation. To address these shortcomings, this work develops a reduced-order nonlinear terramechanics model as a surrogate of the Soil Contact Model (SCM) through extending a state-of-the-art Bekker model to account for additional dynamic effects. It is shown that this reduced-order surrogate model is able to accurately replicate the forces predicted by the SCM while reducing the computation cost by an order of magnitude. This surrogate model is then utilized in a unscented Kalman filter to estimate the sinkage exponent. Simulations suggest this parameter can be estimated within 4% of its true value for clay and sandy loam terrains. It is also shown that utilizing this estimated parameter can reduce the prediction errors of the future vehicle states by orders of magnitude, which could assist with achieving more robust model-predictive autonomous navigation strategies.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1228359370
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.jterra.2020.03.001