Back to Search Start Over

SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python

Authors :
Virtanen, Pauli
Gommers, Ralf
Oliphant, Travis E.
Haberland, Matt
Reddy, Tyler
Cournapeau, David
Burovski, Evgeni
Peterson, Pearu
Weckesser, Warren
Bright, Jonathan
van der Walt, Stéfan J.
Brett, Matthew
Wilson, Joshua
Millman, K. Jarrod
Mayorov, Nikolay
Nelson, Andrew R. J.
Jones, Eric
Kern, Robert
Larson, Eric
Carey, CJ
Polat, İlhan
Feng, Yu
Moore, Eric W.
VanderPlas, Jake
Laxalde, Denis
Perktold, Josef
Cimrman, Robert
Henriksen, Ian
Quintero, E. A.
Harris, Charles R
Archibald, Anne M.
Ribeiro, Antônio H.
Pedregosa, Fabian
van Mulbregt, Paul
Contributors, SciPy 1. 0
Virtanen, Pauli
Gommers, Ralf
Oliphant, Travis E.
Haberland, Matt
Reddy, Tyler
Cournapeau, David
Burovski, Evgeni
Peterson, Pearu
Weckesser, Warren
Bright, Jonathan
van der Walt, Stéfan J.
Brett, Matthew
Wilson, Joshua
Millman, K. Jarrod
Mayorov, Nikolay
Nelson, Andrew R. J.
Jones, Eric
Kern, Robert
Larson, Eric
Carey, CJ
Polat, İlhan
Feng, Yu
Moore, Eric W.
VanderPlas, Jake
Laxalde, Denis
Perktold, Josef
Cimrman, Robert
Henriksen, Ian
Quintero, E. A.
Harris, Charles R
Archibald, Anne M.
Ribeiro, Antônio H.
Pedregosa, Fabian
van Mulbregt, Paul
Contributors, SciPy 1. 0
Publication Year :
2019

Abstract

SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.<br />Comment: Article source data is available here: https://github.com/scipy/scipy-articles

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1228358397
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s41592-019-0686-2