Back to Search
Start Over
Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites
- Source :
- Progress in Organic Coatings
- Publication Year :
- 2021
-
Abstract
- Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.
Details
- Database :
- OAIster
- Journal :
- Progress in Organic Coatings
- Notes :
- Progress in Organic Coatings
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1228006235
- Document Type :
- Electronic Resource