Back to Search Start Over

Unsymmetrical N-Aryl-1-(pyridin-2-yl)methanimine Ligands in Organonickel(II) Complexes: More Than a Blend of 2,2'-Bipyridine and N,N-Diaryl-alpha-diimines?

Authors :
Biewer, Christian
Hamacher, Claudia
Kaiser, Andre
Vogt, Nicolas
Sandleben, Aaron
Chin, Mason T.
Yu, Siqi
Vicic, David A.
Klein, Axel
Biewer, Christian
Hamacher, Claudia
Kaiser, Andre
Vogt, Nicolas
Sandleben, Aaron
Chin, Mason T.
Yu, Siqi
Vicic, David A.
Klein, Axel
Publication Year :
2016

Abstract

The new organonickel complexes [(R-PyMA)Ni(Mes)X] [R-PyMA = N-aryl-1-(pyridin-2-yl)methanimine; aryl = phenyl, 2,6-Me-2-, 3,5-Me-2-, 2,4,6-Me-3-, 2,6-Pr-i(2)-, 3,5-(OMe)(2)-, 2-NO2-4-Me-, 4-NO2-, 2-CF3-, and 2-CF3-6-F-phenyl; Mes = 2,4,6-trimethylphenyl; X = F, Cl, Br, or I] were obtained as approximate 1/1 cis and trans isomeric mixtures or pure cis isomers depending on the PyMA ligand and X. The [(R-PyMA)Ni(Mes)X] complexes with X = Br or Cl were directly synthesized from the precursors trans-[(PPh3)(2)Ni(Mes)X], while [(PyMA)Ni(Mes)X] derivatives with X = F or I were obtained from [(PyMA)Ni(Mes)Br] through X exchange reactions. Although density functional theory (DFT) calculations show a preference for the sterically favored cis isomers, both isomers could be observed in many cases; in three cases, even single crystals for X-ray diffraction could be obtained for the trans isomers. Possible intermediates for the isomerization were investigated by DFT calculations. All complexes were studied by multiple spectroscopic means, electrochemistry, and spectroelectrochemistry (for the reduction processes). The long-wavelength metal-to-ligand charge-transfer (MLCT) absorptions vary markedly with the R substituent of the ligand and the cathodic electrochemical potentials to a far smaller degree. Both are almost invariable upon variation of X. All of this is in line with Ni-based and pi*-based lowest unoccupied molecular orbitals (LUMOs). In line with the unsymmetric character of the (NPyNmethanimine)-N-Lambda ligand,electrochemistry and MLCT transitions seem to not correspond to the same type of pi* LUMO, making these PyMA ligands more interesting than the symmetric heteroaromatic polypyridine ligands such as 2,2'-bipyridine (bpy; (NpyNpy)-N-Lambda) and N,N-diaryl-substituted aliphatic alpha-diimines ((NmethanimineNmethanimine)-N-Lambda) such as the diaza-1,3-butadienes (DAB). First attempts to use these complexes in Negishi-type cross-coupling reactions were successful.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1223531547
Document Type :
Electronic Resource