Back to Search
Start Over
Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application
- Publication Year :
- 2020
-
Abstract
- Fuel cell produces clean sources of energy and yielding can be improved using emerging material (MXene) in electrocatalysis performance in a fuel cell system. However, MXene in electrocatalysis area for fuel cell is not discovered yet. Therefore, the aim of this study is to enhance the direct methanol fuel cell (DMFC) electrocatalyst performance using combination of bimetallic PtRu and MXene. Optimization is carried out using response surface methodology (RSM). Composition of MXene, Nafion content and methanol concentration are used as factors (input) and current density is used as a response (output) for the optimization analysis. A cyclic voltammetry (CV) is used to measure the current density. RSM generates optimum factors with MXene composition 78.90 wt%, Nafion content 19.71 wt% and methanol concentration of 2.82M. The optimum response is predicted to be 186.59mA/mgPtRu. The validation test is carried out and the result shows that the average current density is 187.05mA/mgPtRu. PtRu/MXene electrocatalyst produces 2.34 times higher current density compared to PtRu/C commercial electrocatalyst. This indicates that MXene has high potential as a nanocatalyst for cleaner energy production through the fuel cell.
Details
- Database :
- OAIster
- Notes :
- text, https://eprints.lancs.ac.uk/id/eprint/148453/1/Revised_MS.pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1201480528
- Document Type :
- Electronic Resource