Back to Search Start Over

Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

Authors :
Mağden, Emir Salih (ORCID 0000-0001-7680-6818 & YÖK ID 276368)
Li, Nanxi; Vermeulen, Diedrik; Su, Zhan; Xin, Ming; Singh, Neetesh; Ruocco, Alfonso; Notaros, Jelena; Poulton, Christopher V.; Timurdogan, Erman; Baiocco, Christopher; Watts, Michael R.
College of Engineering
Department of Electrical and Electronics Engineering
Mağden, Emir Salih (ORCID 0000-0001-7680-6818 & YÖK ID 276368)
Li, Nanxi; Vermeulen, Diedrik; Su, Zhan; Xin, Ming; Singh, Neetesh; Ruocco, Alfonso; Notaros, Jelena; Poulton, Christopher V.; Timurdogan, Erman; Baiocco, Christopher; Watts, Michael R.
College of Engineering
Department of Electrical and Electronics Engineering
Source :
Optics Express
Publication Year :
2018

Abstract

A tunable laser source is a crucial photonic component for many applications, such as spectroscopic measurements, wavelength division multiplexing (WDM), frequency-modulated light detection and ranging (LIDAR), and optical coherence tomography (OCT). In this article, we demonstrate the first monolithically integrated erbium-doped tunable laser on a complementary-metal-oxide-semiconductor (CMOS)-compatible silicon photonics platform. Erbium-doped Al2O3 sputtered on top is used as a gain medium to achieve lasing. The laser achieves a tunability from 1527 nm to 1573 nm, with a >40 dB side mode suppression ratio (SMSR). The wide tuning range (46 nm) is realized with a Vernier cavity, formed by two Si3N4 microring resonators. With 107 mW on-chip 980 nm pump power, up to 1.6 mW output lasing power is obtained with a 2.2% slope efficiency. The maximum output power is limited by pump power. Fine tuning of the laser wavelength is demonstrated by using the gain cavity phase shifter. Signal response times are measured to be around 200 mu s and 35 mu s for the heaters used to tune the Vernier rings and gain cavity longitudinal mode, respectively. The linewidth of the laser is 340 kHz. measured via a self-delay heterodyne detection method. Furthermore, the laser signal is stabilized by continuous locking to a mode-locked laser (MLL) over 4900 seconds with a measured peak-to-peak frequency deviation below 10 Hz.<br />Defense Advanced Research Projects Agency (DARPA) Direct On-Chip Digital Optical Synthesizer (DODOS) project

Details

Database :
OAIster
Journal :
Optics Express
Notes :
pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1200730969
Document Type :
Electronic Resource