Back to Search Start Over

Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae

Authors :
Mancini, Emiliano
Baldini, Frecesco
Tammaro, Federica
Calzetta, Maria
Serrao, Aurello
George, Philip
Morlais, Isabelle
Masiga, Daniel
Sharakhov, Igor V.
Rogers, David W.
Catteruccia, F;a,omoa
della Torre, Alessandra
Mancini, Emiliano
Baldini, Frecesco
Tammaro, Federica
Calzetta, Maria
Serrao, Aurello
George, Philip
Morlais, Isabelle
Masiga, Daniel
Sharakhov, Igor V.
Rogers, David W.
Catteruccia, F;a,omoa
della Torre, Alessandra
Publication Year :
2011

Abstract

Background: During copulation, the major Afro-tropical malaria vector Anopheles gambiae s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the “mating plug”). These proteins are postulated to function as important modulators of female post-mating responses. To understand the role of selective forces underlying the evolution of these proteins in the A. gambiae complex, we carried out an evolutionary analysis of gene sequence and expression divergence on a pair of paralog genes called AgAcp34A-1 and AgAcp34A-2. These encode MAG-specific proteins which, based on homology with Drosophila, have been hypothesized to play a role in sperm viability and function. Results: Genetic analysis of 6 species of the A. gambiae complex revealed the existence of a third paralog (68-78% of identity), that we named AgAcp34A-3. FISH assays showed that this gene maps in the same division (34A) of chromosome-3R as the other two paralogs. In particular, immuno-fluorescence assays targeting the C-terminals of AgAcp34A-2 and AgAcp34A-3 revealed that these two proteins are localized in the posterior part of the MAG and concentrated at the apical portion of the mating plug. When transferred to females, this part of the plug lies in proximity to the duct connecting the spermatheca to the uterus, suggesting a potential role for these proteins in regulating sperm motility. AgAcp34A-3 is more polymorphic than the other two paralogs, possibly because of relaxation of purifying selection. Since both unequal crossing-over and gene conversion likely homogenized the members of this gene family, the interpretation of the evolutionary patterns is not straightforward. Although several haplotypes of the three paralogs are shared by most A. gambiae s.l. species, some fixed species-specific replacements (mainly placed in the N- and C-terminal portions of the secreted peptides) were also observed, suggesting some lineage-specific adaptation. Conclusions: Progress in understandi

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1200161198
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1186.1471-2148-11-292