Back to Search
Start Over
Genome-wide RNA-interference screen for human host factors vital to influenza A virus-induced cell death and viral replication
- Publication Year :
- 2013
-
Abstract
- Influenza virus is a globally significant infectious agent with the potential to cause catastrophic pandemic outbreaks. Present treatment of influenza infections is restricted to only four anti-viral drugs, but there are increasing global reports of anti-viral resistance in several seasonal strains and also the 2009 pandemic swine-origin influenza virus H1N1. Possible future pandemic outbreaks, emerging new strains and drug resistance underscore the need to understand this complex virus and its pathogenicity with the goal that novel targets can be uncovered for future therapeutic development. Extensive lung tissue damage during influenza virus infection is proposed to contribute to the development of aberrant host immune responses. Strong evidence now demonstrates the significance of the cellular death pathway in promoting efficient influenza virus replication and disease progression. Viruses rely heavily on the machinery of their host for productive replication, which is also an Achilles’ heel that could be targeted for treatment. In pursuit of unraveling the complex nature of influenza virus replication, I carried out a global shRNA screen to identify specific host factors and signaling pathways that are involved in influenza-induced cell death and replication. In this study I identified 138 genes required for influenza viruses to induce infected host cell death. These genes were found to be involved in Protein Kinase A, NF-kB and PI3K signaling cascades. These signaling pathways are well known regulators of cell death and survival, which suggests influenza viruses may carefully regulate these pathways to reach a balance that suit their requirements for efficient proliferation, eventually at the cost of the host cell. I chose five candidate genes—BAD, MxB, TNFSF12-13,TNFSF13, and USP47—that were associated with apoptosis and the major signaling pathways determined in my network analysis to further verify the genome-wide screen as well as elucidate the role of thes
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1198423259
- Document Type :
- Electronic Resource