Back to Search Start Over

Balancing porosity and mechanical properties of titanium samples to favor cellular growth against bacteria

Authors :
Universidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transporte
Universidad de Sevilla. Departamento de Ingeniería Química
Universidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materiales
Universidad de Sevilla. RNM159: Grupo TAR-Bioingeniería
Civantos, Ana
Beltrán, A.M.
Domínguez-Trujillo, Cristina
Garvi Higueras, María Dolores
Lebrato Martínez, Julián
Rodríguez-Ortiz, José Antonio
García-Moreno, Francisco
Cauich-Rodríguez, Juan V.
Guzmán, Julio J.
Torres Hernández, Yadir
Universidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transporte
Universidad de Sevilla. Departamento de Ingeniería Química
Universidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materiales
Universidad de Sevilla. RNM159: Grupo TAR-Bioingeniería
Civantos, Ana
Beltrán, A.M.
Domínguez-Trujillo, Cristina
Garvi Higueras, María Dolores
Lebrato Martínez, Julián
Rodríguez-Ortiz, José Antonio
García-Moreno, Francisco
Cauich-Rodríguez, Juan V.
Guzmán, Julio J.
Torres Hernández, Yadir
Publication Year :
2019

Abstract

Two main problems limit the success of titanium implants: bacterial infection, which restricts their osseointegration capacity; and the stiffness mismatch between the implant and the host cortical bone, which promotes bone resorption and risk of fracture. Porosity incorporation may reduce this difference in stiffness but compromise biomechanical behavior. In this work, the relationship between the microstructure (content, size, and shape of pores) and the antibacterial and cellular behavior of samples fabricated by the space-holder technique (50 vol % NH4HCO3 and three ranges of particle sizes) is established. Results are discussed in terms of the best biomechanical properties and biofunctional activity balance (cell biocompatibility and antibacterial behavior). All substrates achieved suitable cell biocompatibility of premioblast and osteoblast in adhesion and proliferation processes. It is worth to highlighting that samples fabricated with the 100–200 μm space-holder present better mechanical behavior—in terms of stiffness, microhardness, and yield strength—which make them a very suitable material to replace cortical bone tissues. Those results exposed the relationship between the surface properties and the race of bacteria and mammalian cells for the surface with the aim to promote cellular growth over bacteria.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1198025084
Document Type :
Electronic Resource