Back to Search
Start Over
Self-oscillations in nonlinear torsional metamaterials
- Publication Year :
- 2013
-
Abstract
- We study the nonlinear dynamics of torsional meta-molecules - sub-wavelength resonators with strong coupling between electromagnetic excitation and rotational deformation - and show that such structures may undergo self-oscillations. We develop a semi-analytical model to evaluate the electromagnetic-elastic coupling in such structures. By analysing the local stability of the system, we reveal two different mechanisms leading to self-oscillations. Contrary to many previously studied optomechanical systems, self-oscillations of torsional meta-molecules can be extremely robust against mechanical damping. Due to the chiral nature of the structure, a consequence of self-oscillations in this system is dynamic nonlinear optical activity, which can be actively controlled by a range of parameters such as the field strength and polarization of the incident wave. © IOP Publishing and Deutsche Physikalische Gesellschaft.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1197515148
- Document Type :
- Electronic Resource