Back to Search Start Over

Adsorbents for the Sequestration of the Pimelea Toxin, Simplexin

Authors :
Gordon, Russell J.
Hungerford, Natasha L.
Laycock, Bronwyn
Ouwerkerk, Diane
Fletcher, Mary T.
Gordon, Russell J.
Hungerford, Natasha L.
Laycock, Bronwyn
Ouwerkerk, Diane
Fletcher, Mary T.
Publication Year :
2019

Abstract

Pimelea poisoning affects cattle grazing arid rangelands of Australia, has no known remedy and significant outbreaks can cost the industry $50 million per annum. Poisoning is attributable to consumption of native Pimelea plants containing the toxin simplexin. Charcoal, bentonite and other adsorbents are currently used by the livestock industry to mitigate the effects of mycotoxins. The efficacy of such adsorbents to mitigate Pimelea poisoning warrants investigation. Through a series of in vitro experiments, different adsorbents were evaluated for their effectiveness to bind simplexin using a simple single concentration, dispersive adsorbent rapid screening method. Initial experiments were conducted in a rumen fluid based medium, with increasing quantities of each adsorbent: sodium bentonite (Trufeed®, Sibelco Australia), biochar (Nutralick®Australia) and Elitox® (Impextraco, Belgium). Data showed the unbound concentration of simplexin decreased with increasing quantities of each adsorbent tested. Sodium bentonite performed best, removing ~95% simplexin at 12 mg/mL. A second experiment using a single amount of adsorbent included two additional adsorbents: calcium bentonite (Bentonite Resources, Australia) and a synthetic adsorbent (Waters, USA). The concentration of simplexin remaining in the solution after 1 h, the amount able to be desorbed off the adsorbent-toxin matrix with replacement fresh fluid, and the amount remaining bound to the adsorbent were measured. All samples containing an adsorbent were statistically different compared to the blank (p < 0.05), indicating some binding activity. Future work will explore the binding mechanisms and behaviour of the toxin-adsorbent complex in the lower gastrointestinal tract.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1191807754
Document Type :
Electronic Resource