Back to Search Start Over

Fuji-SfM dataset: a collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry

Authors :
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Gené Mola, Jordi
Sanz Cortiella, Ricardo
Rosell Polo, Joan Ramon
Morros Rubió, Josep Ramon
Ruiz Hidalgo, Javier
Vilaplana Besler, Verónica
Gregorio, Eduard
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Gené Mola, Jordi
Sanz Cortiella, Ricardo
Rosell Polo, Joan Ramon
Morros Rubió, Josep Ramon
Ruiz Hidalgo, Javier
Vilaplana Besler, Verónica
Gregorio, Eduard
Publication Year :
2020

Abstract

The present dataset contains colour images acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry. The data provided in this article is related to the research article entitled “Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry” [1]. The Fuji-SfM dataset includes: (1) a set of 288 colour images and the corresponding annotations (apples segmentation masks) for training instance segmentation neural networks such as Mask-RCNN; (2) a set of 582 images defining a motion sequence of the scene which was used to generate the 3D model of 11 Fuji apple trees containing 1455 apples by using SfM; (3) the 3D point cloud of the scanned scene with the corresponding apple positions ground truth in global coordinates. With that, this is the first dataset for fruit detection containing images acquired in a motion sequence to build the 3D model of the scanned trees with SfM and including the corresponding 2D and 3D apple location annotations. This data allows the development, training, and test of fruit detection algorithms either based on RGB images, on coloured point clouds or on the combination of both types of data.<br />This work was partly funded by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Economy and Competitiveness (project AGL2013-48297-C2-2-R) and the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00). Part of the work was also developed within the framework of the project TEC2016-75976-R, financed by the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (ERDF). The Spanish Ministry of Education is thanked for Mr. J. Gené’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) and Vicens Maquinària Agrícola S.A. for their support during data acquisition, and Ernesto Membrillo and Roberto Maturino for their support in dataset labelling.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1190534963
Document Type :
Electronic Resource