Back to Search
Start Over
Magnetic Modulation of Terahertz Waves via Spin-Polarized Electron Tunneling Based on Magnetic Tunnel Junctions
- Source :
- Australian Institute for Innovative Materials - Papers
- Publication Year :
- 2020
-
Abstract
- © 2020 American Physical Society. Magnetic tunnel junctions (MTJs) are a key technology in modern spintronics because they are the basis of read-heads of modern hard disk drives, nonvolatile magnetic random access memories, and sensor applications. In this paper, we demonstrate that tunneling magnetoresistance can influence terahertz (THz) wave propagation through a MTJ. In particular, various magnetic configurations between parallel state and antiparallel state of the magnetizations of the ferromagnetic layers in the MTJ have the effect of changing the conductivity, making a functional modulation of the propagating THz electromagnetic fields. Operating in the THz frequency range, a maximal modulation depth of 60% is reached for the parallel state of the MTJ with a thickness of 77.45 nm, using a magnetic field as low as 30 mT. The THz conductivity spectrum of the MTJ is governed by spin-dependent electron tunneling. It is anticipated that the MTJ device and its tunability scheme will have many potential applications in THz magnetic modulators, filtering, and sensing.
Details
- Database :
- OAIster
- Journal :
- Australian Institute for Innovative Materials - Papers
- Notes :
- application/pdf
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1184762883
- Document Type :
- Electronic Resource