Back to Search
Start Over
Primes $p \equiv 1 \bmod{d}$ and $a^{(p-1)/d} \equiv 1 \bmod{p}$}
- Publication Year :
- 2019
-
Abstract
- Suppose that $d \in \{ 2, 3, 4, 6 \}$ and $a \in \mathbb{Z}$ with $a\neq -1$and $a$ is not square. Let $P_{(a,d)}$ be the number of primes $p$ notexceeding $x$ such that $p \equiv 1 \pmod{d}$ and $a^{(p-1)/d} \equiv 1\pmod{p}$. In this paper, we study the mean value of $P_{(a,d)}$.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1157337994
- Document Type :
- Electronic Resource