Back to Search Start Over

Primes $p \equiv 1 \bmod{d}$ and $a^{(p-1)/d} \equiv 1 \bmod{p}$}

Authors :
Gao, P
Zhao, L
Gao, P
Zhao, L
Publication Year :
2019

Abstract

Suppose that $d \in \{ 2, 3, 4, 6 \}$ and $a \in \mathbb{Z}$ with $a\neq -1$and $a$ is not square. Let $P_{(a,d)}$ be the number of primes $p$ notexceeding $x$ such that $p \equiv 1 \pmod{d}$ and $a^{(p-1)/d} \equiv 1\pmod{p}$. In this paper, we study the mean value of $P_{(a,d)}$.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1157337994
Document Type :
Electronic Resource