Back to Search
Start Over
Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2x6 materials
- Source :
- Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
- Publication Year :
- 2019
-
Abstract
- Recently, ferroelectric materials have attracted considerable research attention. In particular, two dimensional (2D) ferroelectric materials have been considered as most crucial for nextgeneration circuit designs because of their application as novel electric memory devices. However, a 2D ferroelectric material is very rare. The ferroelectric materials with the form ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se) are of interest because of their ferroelectric property maintained in their ultrathin structures. Within the ABP2X6 monolayer, the P—P bonds form the pillars that hold the top and bottom X planes, while the off-center A—B atoms between the X layers induce a spontaneous ferroelectric polarization. If the two off-center A—B sites are equally aligned, this would lead to the appearance of the paraelectric state. Such intriguing structures must impart novel mechanical properties to the materials. Until now, there has been no report on the mechanical properties of monolayer ABP2X6. Based on first-principles calculations, we studied the structural, electronic, mechanical as well as the electromechanical coupling properties of monolayer ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se). We found that they are all semiconductors with wide bandgaps of 2.73, 2.17, 3.00, and 2.31 eV for CuInP2Se6, CuBiP2Se6, AgBiP2Se6, and AgBiP2Se6, respectively, which are calculated based on the Heyd-Scuseria-Ernzerhof (HSE) exchange correlation functional model. The conduction band minimum is mainly from p orbitals of X and B atoms, whereas the valence band maximum is due to the hybridization of the p orbital of X atoms and the d orbital of A atoms. Moreover, there are three short and three long A/B—X bonds due to the A—B offcenter displacement. Together with the d-p orbital hybridization, the main reason for the dist
Details
- Database :
- OAIster
- Journal :
- Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1157275346
- Document Type :
- Electronic Resource