Back to Search Start Over

Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region

Authors :
Marone, Federica
van der Meijde, Mark
van der Lee, Suzan
Giardini, Domenico
Marone, Federica
van der Meijde, Mark
van der Lee, Suzan
Giardini, Domenico
Publication Year :
2017

Abstract

A new map for the Moho discontinuity (EAM02) in the Eurasia-Africa plate boundary region is presented. Reliable results have also been obtained for the southern and eastern Mediterranean Basin, the northern African coasts and the eastern Atlantic Ocean, regions only occasionally considered in studies on the Mediterranean region. The Moho topography model is derived from two independent sets of constraints. Information contained in the fundamental and higher-mode Rayleigh waves obtained from waveform modelling is used to constrain the Moho depth between estimates of crustal thickness taken from published reflection and refraction surveys, gravity studies and receiver function analysis. Strong lateral variations in the Moho topography have been observed in the Mediterranean Sea, confirming the complex evolution of this plate boundary region. In the west, the Moho discontinuity has been found at 15-20 km depth, suggesting extended and, at least in some locations, oceanic crust, while in the east the crust is on average 25-30 km thick. There it is interpreted either as Mesozoic oceanic or thinned Precambrian continental crust covered by thick sedimentary deposits. Standard continental crust (30-35 km) is observed along the eastern part of the northern African coast, while to the west a rapid change from a relatively deep Moho (down to 42 km) below the Atlas Mountain Range to the thin crust of the southwestern Mediterranean Sea has been found. The crust beneath the eastern North Atlantic Ocean can be up to 5 km thicker compared with standard oceanic crust (6 km). The crust has been interpreted to be heterogeneous as a consequence of irregular magma supply at the Mid-Atlantic ridge. In addition, serpentinization of the sub-Moho mantle could contribute to the imaging of apparently anomalous thick oceanic crust. In Europe, the presence of crustal roots (>45 km) beneath the major mountain belts has been confirmed, while thin crust (<25 km) has been found beneath extensional

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1156694918
Document Type :
Electronic Resource