Back to Search Start Over

Detecting frontotemporal dementia syndromes using MRI biomarkers

Authors :
Bruun, Marie
Koikkalainen, Juha
Rhodius-Meester, Hanneke F.M.
Baroni, Marta
Gjerum, Le
van Gils, Mark
Soininen, Hilkka
Remes, Anne M.
Hartikainen, Päivi
Waldemar, Gunhild
Mecocci, Patrizia
Barkhof, Frederik
Pijnenburg, Yolande
van der Flier, Wiesje M.
Hasselbalch, Steen G.
Lötjönen, Jyrki
Frederiksen, Kristian S.
Bruun, Marie
Koikkalainen, Juha
Rhodius-Meester, Hanneke F.M.
Baroni, Marta
Gjerum, Le
van Gils, Mark
Soininen, Hilkka
Remes, Anne M.
Hartikainen, Päivi
Waldemar, Gunhild
Mecocci, Patrizia
Barkhof, Frederik
Pijnenburg, Yolande
van der Flier, Wiesje M.
Hasselbalch, Steen G.
Lötjönen, Jyrki
Frederiksen, Kristian S.
Source :
Bruun , M , Koikkalainen , J , Rhodius-Meester , H F M , Baroni , M , Gjerum , L , van Gils , M , Soininen , H , Remes , A M , Hartikainen , P , Waldemar , G , Mecocci , P , Barkhof , F , Pijnenburg , Y , van der Flier , W M , Hasselbalch , S G , Lötjönen , J & Frederiksen , K S 2019 , ' Detecting frontotemporal dementia syndromes using MRI biomarkers ' , NeuroImage: Clinical , vol. 22 , 101711 .
Publication Year :
2019

Abstract

Background: Diagnosing frontotemporal dementia may be challenging. New methods for analysis of regional brain atrophy patterns on magnetic resonance imaging (MRI) could add to the diagnostic assessment. Therefore, we aimed to develop automated imaging biomarkers for differentiating frontotemporal dementia subtypes from other diagnostic groups, and from one another. Methods: In this retrospective multicenter cohort study, we included 1213 patients (age 67 ± 9, 48% females) from two memory clinic cohorts: 116 frontotemporal dementia, 341 Alzheimer's disease, 66 Dementia with Lewy bodies, 40 vascular dementia, 104 other dementias, 229 mild cognitive impairment, and 317 subjective cognitive decline. Three MRI atrophy biomarkers were derived from the normalized volumes of automatically segmented cortical regions: 1) the anterior vs. posterior index, 2) the asymmetry index, and 3) the temporal pole left index. We used the following performance metrics: area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To account for the low prevalence of frontotemporal dementia we pursued a high specificity of 95%. Cross-validation was used in assessing the performance. The generalizability was assessed in an independent cohort (n = 200). Results: The anterior vs. posterior index performed with an AUC of 83% for differentiation of frontotemporal dementia from all other diagnostic groups (Sensitivity = 59%, Specificity = 95%, positive likelihood ratio = 11.8, negative likelihood ratio = 0.4). The asymmetry index showed highest performance for separation of primary progressive aphasia and behavioral variant frontotemporal dementia (AUC = 85%, Sensitivity = 79%, Specificity = 92%, positive likelihood ratio = 9.9, negative likelihood ratio = 0.2), whereas the temporal pole left index was specific for detection of semantic variant primary progressive aphasia (AUC = 85%, Sensitivity = 82%, Specificity = 80%, positive likelihood ratio = 4.1, negative

Details

Database :
OAIster
Journal :
Bruun , M , Koikkalainen , J , Rhodius-Meester , H F M , Baroni , M , Gjerum , L , van Gils , M , Soininen , H , Remes , A M , Hartikainen , P , Waldemar , G , Mecocci , P , Barkhof , F , Pijnenburg , Y , van der Flier , W M , Hasselbalch , S G , Lötjönen , J & Frederiksen , K S 2019 , ' Detecting frontotemporal dementia syndromes using MRI biomarkers ' , NeuroImage: Clinical , vol. 22 , 101711 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1153678550
Document Type :
Electronic Resource