Back to Search Start Over

Vibration-Based structural health monitoring using piezoelectric transducers and parametric t-SNE

Authors :
Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Agis Cherta, David
Pozo Montero, Francesc
Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Agis Cherta, David
Pozo Montero, Francesc
Publication Year :
2020

Abstract

In this paper, we evaluate the performance of the so-called parametric t-distributed stochastic neighbor embedding (P-t-SNE), comparing it to the performance of the t-SNE, the non-parametric version. The methodology used in this study is introduced for the detection and classification of structural changes in the field of structural health monitoring. This method is based on the combination of principal component analysis (PCA) and P-t-SNE, and it is applied to an experimental case study of an aluminum plate with four piezoelectric transducers. The basic steps of the detection and classification process are: (i) the raw data are scaled using mean-centered group scaling and then PCA is applied to reduce its dimensionality; (ii) P-t-SNE is applied to represent the scaled and reduced data as 2-dimensional points, defining a cluster for each structural state; and (iii) the current structure to be diagnosed is associated with a cluster employing two strategies: (a) majority voting; and (b) the sum of the inverse distances. The results in the frequency domain manifest the strong performance of P-t-SNE, which is comparable to the performance of t-SNE but outperforms t-SNE in terms of computational cost and runtime. When the method is based on P-t-SNE, the overall accuracy fluctuates between 99.5% and 99.75%.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1151825682
Document Type :
Electronic Resource