Back to Search Start Over

Residual attention graph convolutional network for geometric 3D scene classification

Authors :
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Mosella Montoro, Albert
Ruiz Hidalgo, Javier
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
Mosella Montoro, Albert
Ruiz Hidalgo, Javier
Publication Year :
2019

Abstract

Geometric 3D scene classification is a very challenging task. Current methodologies extract the geometric information using only a depth channel provided by an RGB-D sensor. These kinds of methodologies introduce possible errors due to missing local geometric context in the depth channel. This work proposes a novel Residual Attention Graph Convolutional Network that exploits the intrinsic geometric context inside a 3D space without using any kind of point features, allowing the use of organized or unorganized 3D data. Experiments are done in NYU Depth v1 and SUN-RGBD datasets to study the different configurations and to demonstrate the effectiveness of the proposed method. Experimental results show that the proposed method outperforms current state-of-the-art in geometric 3D scene classification tasks.<br />This research was supported by Secretary of Universities and Research of the Generalitat de Catalunya and the European Social Fund via a PhD grant (FI2019) in the framework of project TEC2016-75976-R, financed by the Ministerio de Economía, Industria y Competitividad and the European Regional Development Fund (ERDF).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
10 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1151824129
Document Type :
Electronic Resource