Back to Search Start Over

Red-bed bleaching in a CO2 storage analogue: insights from Entrada Sandstone fracture-hosted mineralization

Authors :
Rushton, Jeremy C.
Wagner, Doris
Pearce, Jonathan M.
Rochelle, Christopher A.
Purser, Gemma
Rushton, Jeremy C.
Wagner, Doris
Pearce, Jonathan M.
Rochelle, Christopher A.
Purser, Gemma
Publication Year :
2020

Abstract

Improving our ability to predict the interactions between CO2 and reservoir rocks at geological time scales is of key importance if carbon capture and storage (CCS) is to have a role in climate-change mitigation, particularly in the light of likely regulatory requirements. Understanding and identifying the relevant geological processes over long time scales can be obtained only at natural-analogue sites. At one such site, in the Salt Wash Graben area of Utah, USA, widespread bleaching affects the Middle Jurassic red-bed “wet dune” Entrada Sandstone. Previous work has proposed a genetic link between the bleaching and spatially concomitant recent and modern CO2-rich fluids. The results presented here challenge some of the previous models and come from a detailed petrographic examination of mineralized fractures in the Entrada Sandstone that are centered in vertical extensions to the bleaching. These fractures typically contain complex mineralization assemblages. Pyrite was a paragenetically early phase, identifiable from common pseudomorphs of mixed iron oxides and oxyhydroxides that rarely contain relict pyrite. The pyrite contains up to 3 wt% arsenic. The volume of fracture-adjacent bleached sandstone is sufficient to have been the source of iron for the pyrite originally present in the fracture. The pyrite pseudomorphs occur at the center of fracture- and pore-filling cements that comprise intergrowths of hematite–goethite–jarosite–gypsum, an assemblage that suggests that their formation resulted from the oxidative alteration of pyrite, a genetic link supported by the arsenic present in the iron-bearing minerals. The presence of jarosite and proximal removal of earlier, sandstone-hosted carbonates are consistent with, and indicative of, the low-pH conditions associated with pyrite oxidation reactions. Calcite- and gypsum-cemented fractures crosscut, and contain fragments of, the pyrite-pseudomorphic and -oxidation assemblages, proving that they postdate pyrite form

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1151370087
Document Type :
Electronic Resource