Back to Search Start Over

Implementation of Kernal Methods on the GPU

Authors :
Lovell, B
Maeder, A
Caelli, T
Ourselin, S
Ohmer, Julius
Maire, Frederic
Brown, Ross
Lovell, B
Maeder, A
Caelli, T
Ourselin, S
Ohmer, Julius
Maire, Frederic
Brown, Ross
Source :
8th International Conference on Digital Image Computing: Techniques and Applications
Publication Year :
2005

Abstract

Kernel methods such as kernel principal component analysis and support vector machines have become powerful tools for pattern recognition and computer vision. Unfortunately the high computational cost of kernel methods is a limiting factor for real-time classification tasks when running on the CPU of a standard PC. Over the last few years, commodity Graphics Processing Units (GPU) have evolved from fixed graphics pipeline processors into more flexible and powerful data-parallel processors. These stream processors are capable of sustaining computation rates of greater than ten times that of a single CPU. GPUs are inexpensive and are becoming ubiquitous (desktops, laptops, PDAs, cell phones). In this paper, we present a face recognition system based on kernel methods running on the GPU. This GPU implementation is twenty eight times faster than the same optimized application running on the CPU.

Details

Database :
OAIster
Journal :
8th International Conference on Digital Image Computing: Techniques and Applications
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1146596447
Document Type :
Electronic Resource