Back to Search Start Over

Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds

Authors :
Rocchetti, Gabriele
Miragoli, Francesco
Zacconi, Carla
Lucini, Luigi
Rebecchi, Annalisa
Rocchetti Gabriele (ORCID:0000-0003-3488-4513)
Miragoli Francesco
Zacconi Carla (ORCID:0000-0002-4951-9343)
Lucini Luigi (ORCID:0000-0002-5133-9464)
Rebecchi Annalisa (ORCID:0000-0003-0109-4363)
Rocchetti, Gabriele
Miragoli, Francesco
Zacconi, Carla
Lucini, Luigi
Rebecchi, Annalisa
Rocchetti Gabriele (ORCID:0000-0003-3488-4513)
Miragoli Francesco
Zacconi Carla (ORCID:0000-0002-4951-9343)
Lucini Luigi (ORCID:0000-0002-5133-9464)
Rebecchi Annalisa (ORCID:0000-0003-0109-4363)
Publication Year :
2019

Abstract

In this work, quinoa and buckwheat cooked seeds were fermented by two autochthonous strains of lactic acid bacteria isolated from the corresponding seeds, namely Lactobacillus paracasei A1 2.6 and Pediococcus pentosaceus GS·B, with lactic acid chemically acidified seeds as control. The impact of cooking and fermentation on the comprehensive phenolic profile of quinoa and buckwheat seeds was evaluated through untargeted ultra-highpressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). Samples were analyzed also for in vitro antioxidant capacity (as FRAP and ORAC assays) and total phenolic content (TPC). The in vitro spectrophotometric assays highlighted that the microbial fermentation was more efficient in increasing (p < .05) the TPC and in vitro antioxidant potential in quinoa cooked seeds. However, an increase (p < .05) in TPC and ORAC radical scavenging was observed in both pseudocereals after the different cooking processes (i.e., boiling or toasting). The untargeted phenolic profiling depicted the comprehensive phenolic composition in these matrices. Raw seeds of both pseudocereals possessed a similar phenolic content (4.4 g kg−1 equivalents; considering free and bound fractions). Besides, the metabolomics-based approach showed that all treatments (i.e., cooking and fermentation) induced the release of specific classes, namely phenolic acids and tyrosols. The PLS-DA multivariate approach identified in flavonoids the best markers allowing to discriminate the different treatments considered (i.e., cooking, chemical acidification and microbial fermentation). These findings support the use of cooking and microbial fermentation to ensure the health-promoting properties of non-wheat grains, such as buckwheat and quinoa.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1145018603
Document Type :
Electronic Resource