Back to Search Start Over

Identification of arboviruses circulating in mosquito populations in the Bloemfontein area, South Africa

Authors :
Terblance, Gert Ignatius du Preez
Burt, Felicity Jane
Kemp, Alan
Terblance, Gert Ignatius du Preez
Burt, Felicity Jane
Kemp, Alan
Publication Year :
2019

Abstract

Globally there are more than 3 500 different species of mosquito. Many of these are known to be the primary insect vectors of many medically important diseases. Adequate surveillance programs should be put in place to develop effective control strategies and to prevent outbreaks of disease. For a surveillance programme to be effective, mosquito vectors need to be identified accurately. This is done through combining morphological, molecular and environmental data to get more accurate identification results. Currently the diversity of mosquito populations circulating in the Bloemfontein area is not well defined. Mosquitoes were captured from three different sites in the Bloemfontein area. A total of 318 mosquitoes were collected in four different genera. A total of ten different species were identified using morphological identification. Six specimens could only be identified to genus level, because of extensive damage to their external anatomy. Representative specimens were selected from selected species. These included Anopheles squamosus, Culex theileri, Aedes aegypti, Mansonia uniformis and two Aedes subgenus Ochlerotatus species. The Ochlerotatus species include Ochlerotatus harrisoni and Ochlerotatus juppi. DNA was extracted from these mosquitoes and sequenced bidirectionally making use of the barcoding primers, HCO2198 and LCO1490. Anopheles squamosus and Aedes aegypti were identified successfully using the barcoding primers. The primers were less useful for obtaining adequate sequence data for genetic identification of Ochlerotatus spp., Culex theileri and Mansonia uniformis and it is proposed that additional sequence data be obtained subsequent to cloning of fragments. The field caught mosquitoes were sorted and pooled, according to species, capture site and capture date. An RT-qPCR assay was developed to detect Sindbis virus (SINV) using a primer and probe set specifically targeting a region of the nsp2 gene. Another RT-qPCR assay was developed to detect We<br />National Research Foundation (NRF)<br />Poliomyelitis Research Foundation<br />University of the Free State

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1144173480
Document Type :
Electronic Resource