Back to Search
Start Over
Bridging text spotting and SLAM with junction features
- Source :
- Other univ. web domain
- Publication Year :
- 2017
-
Abstract
- Navigating in a previously unknown environment and recognizing naturally occurring text in a scene are two important autonomous capabilities that are typically treated as distinct. However, these two tasks are potentially complementary, (i) scene and pose priors can benefit text spotting, and (ii) the ability to identify and associate text features can benefit navigation accuracy through loop closures. Previous approaches to autonomous text spotting typically require significant training data and are too slow for real-time implementation. In this work, we propose a novel high-level feature descriptor, the “junction”, which is particularly well-suited to text representation and is also fast to compute. We show that we are able to improve SLAM through text spotting on datasets collected with a Google Tango, illustrating how location priors enable improved loop closure with text features.<br />Andrea Bocelli Foundation<br />East Japan Railway Company<br />United States. Office of Naval Research (N00014-10-1-0936, N00014-11-1-0688, N00014-13-1-0588)<br />National Science Foundation (U.S.) (IIS-1318392)
Details
- Database :
- OAIster
- Journal :
- Other univ. web domain
- Notes :
- application/pdf, en_US
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1141892181
- Document Type :
- Electronic Resource