Back to Search Start Over

Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

Authors :
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Singapore-MIT Alliance in Research and Technology (SMART)
Zhang, Rou
Peng, Zhangli
Undisz, Andreas
Diez Silva, Monica
Lim, Chwee Teck
Suresh, Subra
Dao, Ming
Aingaran, Mythili
Law, Sue KaYee
Meyer, Evan
Burke, Thomas A.
Spielmann, Tobias
Marti, Matthias
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Singapore-MIT Alliance in Research and Technology (SMART)
Zhang, Rou
Peng, Zhangli
Undisz, Andreas
Diez Silva, Monica
Lim, Chwee Teck
Suresh, Subra
Dao, Ming
Aingaran, Mythili
Law, Sue KaYee
Meyer, Evan
Burke, Thomas A.
Spielmann, Tobias
Marti, Matthias
Source :
PubMed Central
Publication Year :
2013

Abstract

available in PMC 2013 July 01.<br />Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor–ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.<br />National Institutes of Health (U.S.) (R01A107755801)<br />National Institutes of Health (U.S.) (R01HL094270)<br />Singapore–MIT Alliance for Research and Technology ((SMART) Infectious Diseases Interdisciplinary Research Group)<br />Singapore-MIT Alliance (Advanced Materials for Micro and Nano Systems Programme)<br />Alexander von Humboldt-Stiftung (Feodor Lynen Research Fellowship)

Details

Database :
OAIster
Journal :
PubMed Central
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141885750
Document Type :
Electronic Resource