Back to Search Start Over

CEACAM1 regulates TIM-3-mediated tolerance and exhaustion

Authors :
Massachusetts Institute of Technology. Department of Biology
Whitehead Institute for Biomedical Research
Ploegh, Hidde
Huang, Yu-Hwa
Zhu, Chen
Kondo, Yasuyuki
Anderson, Ana C.
Gandhi, Amit
Russell, Andrew
Dougan, Stephanie K.
Petersen, Britt-Sabina
Melum, Espen
Pertel, Thomas
Clayton, Kiera L.
Raab, Monika
Chen, Qiang
Beauchemin, Nicole
Yazaki, Paul J.
Pyzik, Michal
Ostrowski, Mario A.
Glickman, Jonathan N.
Rudd, Christopher E.
Franke, Andre
Petsko, Gregory A.
Kuchroo, Vijay K.
Blumberg, Richard S.
Massachusetts Institute of Technology. Department of Biology
Whitehead Institute for Biomedical Research
Ploegh, Hidde
Huang, Yu-Hwa
Zhu, Chen
Kondo, Yasuyuki
Anderson, Ana C.
Gandhi, Amit
Russell, Andrew
Dougan, Stephanie K.
Petersen, Britt-Sabina
Melum, Espen
Pertel, Thomas
Clayton, Kiera L.
Raab, Monika
Chen, Qiang
Beauchemin, Nicole
Yazaki, Paul J.
Pyzik, Michal
Ostrowski, Mario A.
Glickman, Jonathan N.
Rudd, Christopher E.
Franke, Andre
Petsko, Gregory A.
Kuchroo, Vijay K.
Blumberg, Richard S.
Source :
PMC
Publication Year :
2015

Abstract

T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers[superscript 1, 2, 3, 4, 5]. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition[superscript 6, 7, 8, 9, 10]. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for T<br />American Association for Cancer Research. Pancreatic Cancer Action Network

Details

Database :
OAIster
Journal :
PMC
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141884540
Document Type :
Electronic Resource