Back to Search
Start Over
Rational matrix pseudodifferential operators
- Source :
- arXiv
- Publication Year :
- 2015
-
Abstract
- The skewfield K(∂) of rational pseudodifferential operators over a differential field K is the skewfield of fractions of the algebra of differential operators K[∂]. In our previous paper, we showed that any H ∈ K(∂) has a minimal fractional decomposition H = AB[superscript −1] , where A,B ∈ K[∂], B ≠ 0, and any common right divisor of A and B is a non-zero element of K . Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-zero element of K[∂] . In the present paper, we study the ring M[subscript n](K(∂)) of n × n matrices over the skewfield K(∂). We show that similarly, any H ∈ M[subscript n](K(∂)) has a minimal fractional decomposition H = AB[superscript −1], where A,B ∈ M[subscript n](K[∂]), B is non-degenerate, and any common right divisor of A and B is an invertible element of the ring M[subscript n](K[∂]). Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-degenerate element of M[subscript n](K[∂]). We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.<br />National Science Foundation (U.S.)
Details
- Database :
- OAIster
- Journal :
- arXiv
- Notes :
- application/pdf, en_US
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1141882235
- Document Type :
- Electronic Resource