Back to Search Start Over

Neuron-level fuzzy memoization in RNNs

Authors :
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. ARCO - Microarquitectura i Compiladors
Silfa Feliz, Franyell Antonio
Dot Artigas, Gem
Arnau Montañés, José María
González Colás, Antonio María
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. ARCO - Microarquitectura i Compiladors
Silfa Feliz, Franyell Antonio
Dot Artigas, Gem
Arnau Montañés, José María
González Colás, Antonio María
Publication Year :
2019

Abstract

The final publication is available at ACM via http://dx.doi.org/10.1145/3352460.3358309<br />Recurrent Neural Networks (RNNs) are a key technology for applications such as automatic speech recognition or machine translation. Unlike conventional feed-forward DNNs, RNNs remember past information to improve the accuracy of future predictions and, therefore, they are very effective for sequence processing problems. For each application run, each recurrent layer is executed many times for processing a potentially large sequence of inputs (words, images, audio frames, etc.). In this paper, we make the observation that the output of a neuron exhibits small changes in consecutive invocations. We exploit this property to build a neuron-level fuzzy memoization scheme, which dynamically caches the output of each neuron and reuses it whenever it is predicted that the current output will be similar to a previously computed result, avoiding in this way the output computations. The main challenge in this scheme is determining whether the new neuron's output for the current input in the sequence will be similar to a recently computed result. To this end, we extend the recurrent layer with a much simpler Bitwise Neural Network (BNN), and show that the BNN and RNN outputs are highly correlated: if two BNN outputs are very similar, the corresponding outputs in the original RNN layer are likely to exhibit negligible changes. The BNN provides a low-cost and effective mechanism for deciding when fuzzy memoization can be applied with a small impact on accuracy. We evaluate our memoization scheme on top of a state-of-the-art accelerator for RNNs, for a variety of different neural networks from multiple application domains. We show that our technique avoids more than 24.2% of computations, resulting in 18.5% energy savings and 1.35x speedup on average.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
12 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141699868
Document Type :
Electronic Resource