Back to Search Start Over

Photospheric albedo and the measurement of energy and angular electron distributions in solar flares

Authors :
Dickson, Ewan Cameron Mackenzie
Dickson, Ewan Cameron Mackenzie

Abstract

In this thesis I examine the role of Compton back-scatter of solar flare Hard X-rays, also known as albedo, in the inference of the parent electron spectrum. I consider how albedo affects measurements of the energy and angular distributions when the mean electron flux spectrum in a solar flare is inferred using regularised inversion techniques. The angular distribution of the accelerated electron spectrum is a key parameter in the understanding of the acceleration and propagation mechanisms that occur in solar flares. However, the anisotropy of energetic electrons is still a poorly known quantity, with observational studies producing evidence for an isotropic distribution and theoretical models mainly considering the strongly beamed case. First we investigate the effect of albedo on the observed spectrum for a variety of commonly considered analytic forms of the pitch angle distribution. As albedo is the result of the scattering of X-ray photons emitted downwards towards the photosphere different angular distributions are likely to exhibit a varying amount of albedo reflection, in particular, downward directed beams of electrons are likely to produce spectra which are strongly influenced by albedo. The low-energy cut-off of the non-thermal electron spectrum is another significant parameter which it is important to understand, as its value can have strong implications for the total energy contained in the flare. However, both albedo and a low energy cut-off will cause a flattening of the observed X-ray spectrum at low energies. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base has been searched to find solar flares with weak thermal components and flat photon spectra in the 15 - 20 keV energy range. Using the method of Tikhonov Regularisation, we determine the mean electron flux distribution from count spectra of a selection of these events. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of

Details

Database :
OAIster
Notes :
pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1140935530
Document Type :
Electronic Resource