Back to Search
Start Over
Adaptive mechanisms in the hypoxic tumor microenvironment. Functional role of proteoglycans and identification of potential treatment targets
- Publication Year :
- 2017
-
Abstract
- Cancer cells reside in a complex microenvironment comprising stromal cells and immune cells embedded in an extracellular matrix (ECM). Early on in tumor progression, cells reach a critical volume beyond which blood supply is impaired, leading to a decrease in oxygen levels (hypoxia) and nutrient supply. This situation triggers a stress response characterized by a metabolic switch to glycolysis, which will in turn induce acidification of the extracellular environment. Under hypoxia and acidosis, cancer cells adapt their integration of nutrients, signaling molecules, and more generally their exchanges with the extracellular environment not only to survive but also enhance tumor aggressiveness, metastasis and treatment resistance. The overall aim of this thesis was to gain a better understanding of cancer cell adaptive mechanisms in the tumor microenvironment under hypoxic and acidic stress, that could be exploited therapeutically. We focused here on proteoglycan (PG)-dependent uptake mechanisms and cell surface proteins as targets of drug delivery. In paper I, we provided evidence for a role of heparan sulfate PGs in increased uptake of lipoproteins linked to enhanced pro-tumorigenic signaling and acquisition of a lipid droplet loaded phenotype under hypoxia and acidosis, associated with increased tumor-forming capacity. In the follow-up paper II we investigated the functional effects of this phenotype during post-hypoxic stress and found increased tumor aggressiveness, macrophage recruitment and angiogenesis in glioma mouse models, correlating with enhanced expression of pro-angiogenic and pro-tumorigenic factors (e.g. VEGF, HGF, CAIX, VIM) in vitro. In paper III, the global effects of hypoxia on tumor cell surface proteome internalization were studied. We showed downregulation of the surface and internalized proteome at hypoxia, involving caveolin-1 negative regulation of endocytosis. Importantly, we identified several surface proteins that were actively internalize
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1140756622
- Document Type :
- Electronic Resource