Back to Search
Start Over
On tropospheric rivers
- Publication Year :
- 2005
-
Abstract
- Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2002.<br />Page 231 blank.<br />Includes bibliographical references (p. 221-230).<br />In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated moisture flux. Firstly, an automated procedure for identifying and tracking these rivers (named TRICKS, i.e., the Tropospheric River Identifying and traCKing Scheme) is described and its performance is evaluated. This procedure enables the maxima of moisture flux (so-called TR cores) to be detected and accurately located. The relationships among the adjacent TR cores are then evaluated to construct the axes of rivers. A river is tracked from birth to termination and its life cycle properties are recorded, thus allowing various statistics of TR distributions and movements to be estimated. All these stages of the scheme are performed without intervention once a number of governing constants have been decided upon. We then apply the scheme to the vertically integrated moisture flux calculated from 43 years of 6-hourly NCEP/NCAR reanalyses and present a climatology of mean TR behavior. On average, there are 4 - 5 rivers per analysis in the Northern Hemisphere and 5 in the Southern Hemisphere. Northern Hemisphere TRs form and intensify near the eastern seaboards of Asia and North America. They move eastward and poleward during their lives before weakening in the two principal graveyards: over the Gulf of Alaska and the region to the southeast of Greenland. In comparison, Southern Hemisphere TRs are more evenly distributed and tend to form in a band extending from the southeast coast of South America into the Atlantic, across the Indian Ocean, and throughout much of middle latitudes of the Pacific sector.<br />(cont.) The corresponding genesis regions are also found to be adjacent to (or slightly equatorward to) the maximum SST gradients in these regions. It appears that both TR genesis and termination maxima tend to be displaced near the upstream equatorward flanks of cyclogenesis and lysis maxima. We suggest that the TR formation and termination could be a leading predictor for the occurrence and decaying of extratropical cyclones. TR axis length appears to be longer during the warmer season and in the Southern Hemisphere. The distance traveled by TR systems shows a broad distribution and a sizeable fraction (-25%) of systems travel in excess of 3000 km. One unique feature is that although TRs occur very actively over the Indian ocean sector with highly densed tracks, large translational speeds, and intensities, they contribute little to meridional water vapor transport, while the reverse situation can be found in the South Pacific where southward transport is sometimes comparable to those over or off the east coast of South America. The rivers seem to account for a substantial fraction of the total meridional moisture transport in both middle and subtropical regions. Finally, we complete the TR climatology with an analysis of the variability and trends exhibited by many aspects of rivers during the 43-year period. The annual average number of TRs per analysis has undergone an overall increase during the last couple of decades and is more significant in the Southern Hemisphere. The greatest increases occur in the 50⁰-30⁰S and 50⁰-70⁰N belts ...<br />by Yuanlong Hu.<br />Ph.D.
Details
- Database :
- OAIster
- Notes :
- 231 p., 21100122 bytes, 21099879 bytes, application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1140657170
- Document Type :
- Electronic Resource