Back to Search
Start Over
The impact of the in utero and early postnatal environments on grey and white matter volume : a study with adolescent monozygotic twins
- Publication Year :
- 2015
-
Abstract
- Prenatal and early postnatal adversities have been shown to be associated with brain development. However, we do not know how much of this association is confounded by genetics, nor whether the postnatal environment can moderate the impact of in utero adversity. This study used a monozygotic (MZ) twin design to assess (1) the association between birth weight (BW) and brain volume in adolescence, (2) the association between within-twin-pair BW discordance and brain volume discordance in adolescence, and (3) whether the association between BW and brain volume in adolescence is mediated or moderated by early negative maternal parenting behaviours. These associations were assessed in a sample of 108 MZ twins followed longitudinally since birth and scanned at age 15. The total grey matter (GM) and white matter (WM) volumes were obtained using the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) toolbox in the Statistical Parametric Mapping version 8 (SPM8). We found that the BW was significantly associated with the total GM and WM volumes, particularly in the superior frontal gyrus and thalamus. Within-twin-pair discordance in BW was also significantly associated with within-pair discordance in both the GM and the WM volumes, supporting the hypothesis that the specific in utero environment is associated with brain development independently of genetics. Early maternal hostile parenting behaviours and depressive symptoms were associated with total GM volume but not WM volume. Finally, greater early maternal hostility may moderate the association between the BW and GM volume in adolescence, since the positive association between the BW and total GM volume appeared stronger at higher levels of maternal hostility (trend). Together, these findings support the importance of the in utero and early environments for brain development.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1140245779
- Document Type :
- Electronic Resource