Back to Search Start Over

QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

Authors :
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Agencia Estatal de Investigación
Ministerio de Economía y Competitividad
Rodríguez-Álvarez, MJ
Sánchez, F.
Soriano Asensi, Antonio
Moliner Martínez, Laura
Sánchez Góez, Sebastián
Benlloch Baviera, Jose María
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Agencia Estatal de Investigación
Ministerio de Economía y Competitividad
Rodríguez-Álvarez, MJ
Sánchez, F.
Soriano Asensi, Antonio
Moliner Martínez, Laura
Sánchez Góez, Sebastián
Benlloch Baviera, Jose María
Publication Year :
2018

Abstract

[EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for solving such a large linear system. The QR-factorization is a numerically stable direct method for solving linear systems of equations, which is beginning to emerge as an alternative to traditional methods, bringing together the best from traditional methods. QR-factorization was chosen because the core of the algorithm, from the computational cost point of view, is precalculated and stored only once for a given CT system, and from then on, each image reconstruction only involves a backward substitution process and the product of a vector by a matrix. Image quality assessment was performed comparing contrast to noise ratio and noise power spectrum; performances regarding sharpness were evaluated by the reconstruction of small structures using data measured from a small animal 3-D CT. Comparisons of QR-factorization with FDK and CG methods show that QR-factorization is able to reconstruct more detailed images for a fixed voxel size.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1138451570
Document Type :
Electronic Resource