Back to Search Start Over

Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste

Authors :
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
FCC Aqualia, S.A.
Generalitat Valenciana
Centro para el Desarrollo Tecnológico Industrial
Ministerio de Economía, Industria y Competitividad
Robles Martínez, Ángel
Capson-Tojo, G.
Ruano García, María Victoria
Seco Torrecillas, Aurora
FERRER, J.
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
FCC Aqualia, S.A.
Generalitat Valenciana
Centro para el Desarrollo Tecnológico Industrial
Ministerio de Economía, Industria y Competitividad
Robles Martínez, Ángel
Capson-Tojo, G.
Ruano García, María Victoria
Seco Torrecillas, Aurora
FERRER, J.
Publication Year :
2018

Abstract

[EN] This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of an initial screening to find out adequate filtration conditions and a real-time optimizer applied to a periodically calibrated filtration model for minimizing the operating costs. The initial screening consists of two statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values. The operating filtration cost after implementing the control methodology was (sic)0.047 per m(3) (59.6% corresponding to energy costs) when treating UWW and 0.067 per m(3) when adding FW due to higher fouling rates. However, FW increased the biogas productivities, reducing the total costs to (sic)0.035 per m(3). Average downtimes for reversible fouling removal of 0.4% and 1.6% were obtained, respectively. The results confirm the capability of the proposed control system for optimizing the AnMBR performance when treating both substrates. (C) 2018 Elsevier Ltd. All rights reserved.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1138449192
Document Type :
Electronic Resource