Back to Search Start Over

Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees

Authors :
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Ministerio de Ciencia e Innovación
Ministerio de Economía y Competitividad
Martinez-Alcantara, Belen
Iglesias, Domingo J.
Reig Valor, Carmina
Mesejo Conejos, Carlos
Agustí Fonfría, Manuel
Primo-Millo, Eduardo
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Ministerio de Ciencia e Innovación
Ministerio de Economía y Competitividad
Martinez-Alcantara, Belen
Iglesias, Domingo J.
Reig Valor, Carmina
Mesejo Conejos, Carlos
Agustí Fonfría, Manuel
Primo-Millo, Eduardo
Publication Year :
2015

Abstract

[EN] Fruit load in alternate-bearing citrus trees is reported to alter shoot number and growth during spring, summer, and autumn flushes, and the source-sink balance, which affects the storage and mobilization of reserve nutrients. The aim of this work was to assess the extent of shoot growth inhibition resulting from the presence of fruits in ` Moncada' mandarin trees loaded with fruit (ON) or with very light fruit load (OFF), and to identify the role of carbohydrates and nitrogenous compounds in the competition between fruits and shoots. Growth of reproductive and vegetative organs was measured on a monthly basis. C-13-and N-15-labeled compounds were supplied to trace the allocation of reserve nutrients and subsequent translocation from source to sink. At the end of the year, OFF trees produced more abundant flushes (2.4-and 4.9-fold higher in number and biomass, respectively) than ON trees. Fruits from ON trees accumulated higher C amounts at the expense of developing flushes, whereas OFF trees exhibited the opposite pattern. An inverse relationship was identified between the amount of C utilized by fruits and vegetative flush growth. C-13-labeling revealed an important role for mature leaves of fruit-bearing branches in supporting shoot/fruit growth, and the elevated sink strength of growing fruits on shoots. N availability for vegetative shoots was not affected by the presence or absence of fruits, which accumulated important amounts of N-15. In conclusion, our results show that shoot growth is resource-limited as a consequence of fruit development, and vegetative-growth inhibition is caused by photoassimilate limitation. The competence for N is not a decisive factor in limiting vegetative growth under the experimental conditions of this study. (C) 2014 Elsevier GmbH. All rights reserved.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1138203445
Document Type :
Electronic Resource