Back to Search Start Over

Quantification of diesel injector dribble using 3D reconstruction from x-ray and DBI imaging

Authors :
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Engineering and Physical Sciences Research Council, Reino Unido
UK Research and Innovation
U.S. Department of Energy
Sechenyh, Vitaliy
Turner, Jack
Sykes, Dan
Duke, Daniel
Swantek, Andrew
Matusik, Katarzyna
Kastengren, Alan
Powell, Christopher
Viera Sotillo, Alberto Antonio
Payri, Raul
Crua, Cyril
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Engineering and Physical Sciences Research Council, Reino Unido
UK Research and Innovation
U.S. Department of Energy
Sechenyh, Vitaliy
Turner, Jack
Sykes, Dan
Duke, Daniel
Swantek, Andrew
Matusik, Katarzyna
Kastengren, Alan
Powell, Christopher
Viera Sotillo, Alberto Antonio
Payri, Raul
Crua, Cyril
Publication Year :
2017

Abstract

[EN] Post-injection dribble is known to lead to incomplete atomisation and combustion due to the release of slow moving, and often surface-bound, liquid fuel after the end of the injection event. This can have a negative effect on engine emissions, performance, and injector durability. To better quantify this phenomenon we present a new image processing approach to quantify the volume and surface area of ligaments produced during the end of injection, for an ECN ‘Spray B’ 3-hole injector. Circular approximation for cross-sections was used to estimate three-dimensional parameters of droplets and ligaments. The image processing consisted in three stages: edge detection, morphological reconstruction, and 3D reconstruction. For the last stage of 3D reconstruction, smooth surfaces were obtained by computation of the alpha shape which represents a bounding volume enveloping a set of 3D points. The object model was verified by calculation of surface area and volume from 2D images of figures with well-known shapes. We show that the object model fits non-spherical droplets and pseudo-cylindrical ligaments reasonably well. We applied our processing approach to datasets generated by different research groups to decouple the effect of gas temperature and pressure on the fuel dribble process. High-speed X-ray phase-contrast images obtained at room temperature conditions (297 K) at the 7-ID beamline of the Advanced Photon Source at Argonne National Laboratory, together with diffused back-illumination (DBI) images captured at a wide range of temperature conditions (293-900 K) by CMT Motores Térmicos, were analysed and compared quantitatively.

Details

Database :
OAIster
Notes :
TEXT, TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1138156970
Document Type :
Electronic Resource