Back to Search
Start Over
ESSAYS ON NEWS AND ASSET PRICES
- Publication Year :
- 2010
-
Abstract
- The first essay examines news and the cross section of returns. Using a sentiment score provided by Thomson Reuters to measure the tone of news articles, this paper examines monthly portfolio returns constructed from information about past news articles. The sentiment score is obtained from the kind of words and phrases that are used in the news article. Positive tone in news articles in the past months predicts positive returns. Similarly, negative tone in the past months predicts negative returns. Past sentiment predicts future returns even for large stocks. The predictive ability of past sentiment dominates the predictive ability of past returns. After controlling for past sentiment, the predictive ability of past returns (in predicting future return) disappears. The findings are robust to multiple specifications. The predictive ability of past sentiment can be used profitably. When applied to the largest decile of stocks, a strategy that takes a long position in stocks with past positive sentiment score and a short position in stocks with past negative sentiment score generates a statistically significant alpha of 34 basis points per month. The resulting portfolio is also positively correlated with a long-short momentum portfolio. Within the same time period, a trading strategy using the sentiment scores from the subset of news articles citing analysts is not profitable. The news items that cite analysts have economically significant contemporaneous returns. The findings suggest that (i) the market underreacts to information contained in news articles, (ii) momentum might be related to underreaction to the sentiment information, and (iii) market participants pay attention to sentiment score information in analyst news. The findings are consistent with a model where one trader has private information and others are trading based on past returns and volume information. The paper also shows that after adjusting for firm size, stocks with abnormally high counts of n
Details
- Database :
- OAIster
- Notes :
- Kyle, Albert S
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1137459780
- Document Type :
- Electronic Resource